BIOMIMETRIE: TECHNOLOGIE IMITIERT NATUR

EINFÜHRUNG


Und Wir senden vom Himmel Wasser nach Gebühr herab und sammeln es in der Erde. Und Wir haben gewiß die Macht, es wieder fortzunehmen. Und Wir lassen euch damit Palmen- und Rebgärten gedeihen, in denen ihr reichlich Früchte habt, von denen ihr eßt, sowie einen Baum, der auf dem Berge Sinai wächst und Öl und Gewürztunke zum Essen hervorbringt. (Quran, 23:18-20)
Haben Sie einmal genau über die Obstbäume in Ihrem Garten nachgedacht, über den Pinienwald, den Sie von Ihrem Fenster aus sehen können, oder die Platanen an der Strasse, die Sie entlang fahren? Wissen Sie, wie diese Pflanzen entstanden sind, und kennen Sie die Stadien, die sie durchliefen, bevor sie zu ausgewachsenen Bäumen wurden? Oder haben Pflanzen für Sie eine rein ästhetische Bedeutung, und es interessiert Sie nicht sonderlich, ob es sie gibt oder nicht? In diesem Fall täuschen Sie sich, denn die Pflanzen sind es, die dafür sorgen, daß es eine adäquate Menge an Sauerstoff in der Atmosphäre gibt, die uns das Atmen ermöglicht, und die Pflanzen sind es auch, die verhindern, daß wir eine Kohlendioxidvergiftung bekommen, die dafür sorgen, daß die Luftfeuchtigkeit meistens in einem für uns angenehmen Bereich bleibt und dafür, daß es weder zu heiß, noch zu kalt ist. Wir verdanken den Pflanzen also sehr viel, sie ermöglichen es uns, ein komfortables Leben zu führen. Doch das sind nicht die einzigen Gründe, warum Pflanzen für fast alle anderen Lebewesen von Nutzen sind. Pflanzen enthalten die Vitamine und Mineralien, die Sie zum Leben brauchen.
Wie die allgemeinen Eigenschaften von Pflanzen das Leben aller Lebewesen beeinflussen, wie sie durch die Photosynthese Nährstoffe produzieren und wundersame Details, wie zum Beispiel große Bäume Substanzen, die ihre Wurzeln aus der Erde ziehen, in ihre höchsten und äußersten Äste transportieren, all das sind Themen eines anderen Buches, Das Wunder der Schöpfung in Pflanzen. Hier untersuchen wir einen anderen Aspekt der Pflanzen genauer, um den Menschen zu helfen, das Thema aus einem anderen Blickwinkel zu betrachten. Jeder weiß, wie Samen aussehen, und jeder weiß, daß Pflanzen aus Samen sprießen. Doch nur Wenige haben je darüber nachgedacht, warum eine solche Vielfalt von Pflanzen aus etwas so Kleinem und scheinbar Leblosem keimen kann, oder wie die Samen all die individuell kodierten Informationen enthalten können, die die Eigenschaften der Pflanzen festlegen.
Wie können Früchte entstehen, mit ihrem einzigartigen Geschmack und Geruch und gerade der richtigen Süße, aus etwas so kleinem und trockenem? Bringt der Same den Baum hervor und schmückt ihn mit Früchten? Bestimmt der Same Form und Farbe von Früchten und Blumen? Packt der Same all die Informationen über den Baum in den Embryo, den er enthält?
Wenn die Menschen sich ein wenig mit solchen Fragen befassen, beginnen sie, darüber nachzudenken, wie ein Same wissen kann, wie er einen Baum hervorbringen muß. Wie kann etwas so Kleines wissen, wie der Baum auszusehen hat, der entstehen soll? Diese letzte Frage ist besonders wichtig, denn es ist nicht nur eine Masse aus Holz, die aus einem Samen entsteht. Wir wissen zum Beispiel, daß Apfelbäume, wie Tausende anderer Pflanzenarten, aus kleinen Samen in der Erde entstehen. Doch aufgrund unbekannter Mittel entsteht nach einer gewissen Zeit aus diesem Samen ein 4 bis 5 Meter hoher Baum, Hunderte Kilo schwer. Die Äpfel dieses Baums haben eine polierte Schale, ein einzigartiges Aroma und sie enthalten süßen Saft. Während der Baum heranwächst, dessen Proportionen gigantisch sind, verglichen mit dem Samen, sind die einzigen Materialien, die der Same nutzen kann, die Nährstoffe, die ihm in seinem ursprünglichen Zustand zur Verfügung stehen – ansonsten nur noch Erde und Sonnenlicht.
Jeder Same, wie der in diesem Beispiel, bringt eine extrem gut organisierte Lebensform hervor, mit eigenem Kreislaufsystem und Wurzeln zur Assimilation von Nährstoffen aus der Erde. Selbst für einen intelligenten Künstler ist es schwer, eine gute Zeichnung eines Baumes anzufertigen, von den Details der Wurzeln und Zweige ganz zu schweigen. Doch ein Same bringt eine lebende Version dieser extrem komplexen Form hervor, mit allen ihren vollständigen Systemen.
Obwohl wir hier sagen, der Same „bringt hervor“, erinnern wir uns daran, daß der Same keinen unabhängigen Verstand, kein Bewußtsein oder einen Willen hat. Es ist demnach nicht plausibel, zu behaupten, daß der Same selbst es ist, der die Bäume und Pflanzen mit ihren beeindruckenden Systemen hervorbringt. Solch eine Behauptung würde implizieren, der Same habe ein extrem großes Wissen, er sei sogar intelligenter als ein Mensch.
Wie dieses Buch beweisen wird, befinden sich versteckt in dem Samen eine überlegene Intelligenz und ein umfassendes Wissen, das natürlich nicht dem Samen selbst zugerechnet werden kann. Es kann nicht behauptet werden, daß die Atome und Moleküle der Materialien, aus denen der Same besteht, intelligent und wissend sind, also muß dieses Wissen irgendwie in den Samen hineingelangt sein. Doch wer brachte es hinein?
Bedenkt man diese Schritte, gelangt man zu einer sehr wichtigen Wahrheit. Der Same, trocken und scheinbar leblos, kann nichts aus eigener Kraft unternehmen. Das Wissen ist dem Samen von einer weit größeren, unvergleichlichen Macht implantiert worden, und diese Macht ist Gott. Gott erschafft den Samen mit dem Wissen und den Systemen, sich zu einer Pflanze zu entwickeln. Jeder auf den Boden fallende Same ist von Gottes’ Wissen umfaßt, durch das er keimt und wächst.
Und bei Ihm sind die Schlüssel des Verborgenen; Er allein kennt es. Er weiß, was zu Land und im Meer ist, und kein Blatt fällt nieder, ohne daß Er es weiß. Und kein Körnchen gibt es in den Finsternissen der Erde und nichts Grünes und nichts Dürres, das nicht in einem deutlichen Buch stünde. (Quran, 6:59)

DAS GEHEIMNIS DES SAMENS


Betrachtet ihr wohl, was ihr da sät? Laßt ihr es wachsen oder lassen Wir es wachsen? Wenn Wir wollten, könnten Wir es zerbröckeln lassen so, daß ihr klagen würdet... (Quran, 56:63-65)
Was ist das unten auf diesen Bildern, das aussieht, wie verrottete Stücke Holz? Können sich diese Dinge in ein Lebewesen verwandeln?
Man könnte denken, es seien Fruchtkerne, Büschel, selbst Abfall. Doch nehmen Sie diese Objekte, stecken sie in einen Topf mit Erde und warten Sie eine Weile. Das Resultat sehen Sie, wenn Sie umblättern.
Die Bilder auf der nächsten Seite zeigen, daß jedes dieser trockenen kleinen Körner ein Same ist; und wenn die passenden Bedingungen vorhanden sind, sprießen sie in verblüffender Weise und werden zu Pflanzen von zahlloser Vielfalt. Was also unterscheidet diese kleinen Körner von einem einfachen Stückchen trockenen Holzes?
Samen haben eine wichtige Eigenschaft, die sie anders sein läßt: Sie enthalten die Informationen über die Form jedes Stamms, jedes Blattes, die Zahl der Zweige, die Stärke und Farbe der Haut oder Rinde, die Zahl und den Durchmesser der Kanäle, durch die Nährstoffe und Wasser fließen, die Höhe der Pflanze, ob sie Früchte tragen wird oder nicht und über deren Geschmack, Geruch, Form und Farbe - kurz, über jedes mögliche Detail der Pflanze, die der Same hervorbringen wird.
Wenn wir diese Samen zum ersten Mal sehen würden, ohne daß wir wüßten, worum es sich handelt, könnten wir raten, daß zahllose Pflanzen auftauchen werden, jede anders als die anderen und daß einige von ihnen etliche Meter groß werden? Nie hätten wir gedacht, daß zahllose duftende Blumen mit beeindruckenden Formen und Farben aus einem trockenen verschrumpelten Korn entstehen könnten – Gänseblümchen, Tulpen, Azaleen, Geranien, Narzissen, Rosen und Veilchen. Nie hätten wir uns vorgestellt, daß eine solche Vielfalt an Früchten, Pfirsiche, Kokosnüsse, Birnen, Quitten, Maulbeeren und Aprikosen, an Bäumen wachsen, die aus diesen Samen hervorgegangen sind; oder daß Brombeeren, Orangen, Mandarinen, Melonen, Pflaumen, Peperoni und Tomaten aus diesen kleinen schwarzen, braunen und gelben Körnern entstehen würden. Es ist wert, darüber nachdenken, daß seit Millionen Jahren alle Eigenschaften der Pflanzen in den Samen enthalten sind. Wenn Sie diese Erkenntnis bedenken, öffnen sich unerwartete Horizonte, die die Perspektive vieler Ereignisse verändern. Um dieses Thema näher zu betrachten, denken Sie an die naheliegendsten Dinge, das Gemüse, die Blumen und Früchten in Ihrer Wohnung.
Welches Wissen muß ein Same haben, um zu einer Wassermelone zu werden? Nehmen Sie ein Stück Wassermelone in die Hand, und Sie erkennen die regelmäßige Ordnung sofort. Alles Wissen, das für den Geschmack, den Duft und die Süße der Wassermelone sorgt, ist in dem Samen der Wassermelone vorhanden. Beachten Sie das dünne Band, mit dem der Same an dem roten Fleisch der Wassermelone befestigt ist und die durchsichtige, schlüpfrige Haut des Samens. Das Wissen über diese Struktur ist ebenso in den Samen vorhanden. Die Muster auf der Außenhaut, deren Stärke und wächsernes Gewebe – von einer Glätte, die ein Steinmetz nicht herstellen könnte – sind ebenfalls in den Samen kodiert. Auf der ganzen Welt haben Wassermelonen dieselben Informationen über ihre Eigenschaften in ihren Samen gespeichert. Aus diesem Grund werden, wenn Sie eine Anzahl Samen von verschieden Orten sammeln und sie in die Erde säen, nach kurzer Zeit kleine Reben sprießen, und später wird jede von ihnen Wassermelonen tragen.
Um ein anderes Beispiel zu nehmen, vergleichen Sie die Eigenschaften von Nadelbäumen mit denen mancher Pflanzen in trockenen Lebensräumen.
Wenn der Erdboden im Winter gefriert, können die Wurzeln kein Wasser mehr aufnehmen. Außerdem fallen die meisten Niederschläge im Winter als Schnee, und aus diesem Grund müssen die Bäume in der Lage sein, den vorherrschenden trockenen Bedingungen zu widerstehen. Das ist wegen ihrer Blätter notwendig, denn die nadelförmigen Blätter vieler Koniferen werden nicht im Herbst abgestoßen, sie haben eine feste Haut, deren wachsartige Oberfläche den durch Verdunstung entstehenden Feuchtigkeitsverlust reduziert. Der interne Wasserdruck gibt den Blättern eine Spannkraft, die verhindert, daß diese abgeworfen werden und die Pflanze welkt. Außerdem gibt die Nadelform der Blätter den Koniferen ihre Widerstandsfähigkeit gegen Frost, weil sie die Verdunstungsoberfläche gegenüber normalen Blättern drastisch reduziert. Jeden Frühling erhält die Pflanze durch die nunmehr schnell sprießenden weiteren Zweige neue Energie. Die Widerstandsfähigkeit der Zweige ist wichtig für die Pflanze, daß sie die durch Photosynthese erzeugten Nährstoffe speichern, wann immer es die Wetterbedingungen erlauben. Nicht Laub abwerfende Bäume sind üblicherweise konisch geformt, was die Zweige davor bewahrt, unter einer zu hohen Schneelast zu brechen. Der Schnee, der auf ihnen liegen bleibt, isoliert den Baum gegen die Minustemperaturen und reduziert den Flüssigkeitsverlust der Blätter.1

Wer eine Wassermelone genau untersucht, dem wird eine bedeutende Tatsache bewußt: Es ist ein Wunder der Schöpfung, daß diese winzigen Samen alle Informationen enthalten, die notwendig sind, eine perfekte Frucht hervorzubringen mit ihrem Geschmack, ihrem Aroma und ihrer schützenden Haut.

Jede Baumart hat andere strukturelle Eigenschaften. Alle diesbezüglichen Informationen sind in deren Samen gespeichert.
Für Pflanzen in der Wüste ist die Trockenheit eine der größten Gefahren. Negative Faktoren wie nur sporadischer Regenfall, Sandstürme und die extreme Hitze würden normalerweise das Aussterben der Wüstenpflanzen verursachen. Doch die Pflanzenarten, die in trockenem Klima leben, verfügen über besondere Eigenschaften, die sie in dieser Umwelt überlebensfähig machen. Der Aufbau ihrer Samen und ihre Methode der Fortpflanzung sorgen dafür. Viele Samen von Wüstenpflanzen enthalten Substanzen, die die Keimung verhindern oder verschieben. Beispielsweise enthalten die Fruchtklappen der Sinapis Alba Blastokolin, das die Keimung der Samen verzögert. In Arizona sprießen manche Wüstenpflanzen erst nach sehr langen Schlafperioden, weil sie bestimmte Substanzen enthalten. Lepidium lasiocarpum zum Beispiel ist erst nach einem Jahr bereit zur Keimung und Streptanthus arizonicus erst nach 26 Monaten. Wie wichtig diese Substanzen sind, wird besonders in Dürrezeiten deutlich.2
Das heißt, daß die keimungsverzögernden Eigenschaften dieser beiden Arten in dem Embryo jedes einzelnen ihrer Samen angelegt sein müssen. Diese wenigen Unterschiede, die die Wüstenpflanzen von anderen unterscheiden, zeigen deutlich den Detaillierungsgrad der codierten Information in ihren Samen.
Die rote Farbe der Rose, die Wölbung jedes einzelnen Blütenblattes, ihre Anzahl, Weichheit, samtiges Gewebe und das Verhältnis der Substanzen, die der Rose ihren Duft geben, all das basiert auf Information. Die dunkelviolette Farbe einer Aubergine, ihre glänzende Haut, die Anordnung der Samen und die Länge ihrer Adern, all das ist hergeleitet aus der in ihrem Embryo eingebetteten Information. Ähnliche Information läßt Süße, saftige kleine Trauben an trockenen, verschlungenen Reben wachsen. Die im Embryo des Samens enthaltene Information läßt die Haut einer Traube anders sein, als die einer Haselnuß. Sie ist verantwortlich für die unterschiedliche Farbe der beiden Früchte, für ihren unterschiedlichen Geschmack, Geruch und die verschiedenen Vitamine, die sie enthalten, wie auch für die Tatsache, daß die eine saftig und die andere trocken ist.

Die Fähigkeit der Wüstenpflanzen, Dürre und Hitze zu widerstehen, beruht auf der in ihren Samen kodierten Information. Es ist der allmächtige Gott, der solch unterschiedliche Informationen in die winzigen Samen packt.

Gott, der Herr der Himmel und der Erde, läßt farbige Rosen von perfekter Schönheit aus trockenen Samen wachsen, wie sie oben abgebildet sind.

Diese Information ist seit dem Auftauchen der ersten samenproduzierenden Pflanzen in jeder Art enthalten. Wäre die Information nicht vorhanden, würden die Pflanzen sofort aussterben. An diesem Punkt sollte folgende Frage auftauchen:
Wer gab diese Information in den Samen?
Die Antwort, die wir haben, wird bereits in der Einführung zu diesem Buch gegeben, doch an diesem Punkt ist es hilfreich, uns daran zu erinnern, daß es Gott ist, der Schöpfer aller Dinge, Der diese lebenswichtigen Informationen in den Samen eingebettet hat.
Die Tatsache, daß solch wichtige Informationen in einem winzigen Samen vorhanden sind, ist ein Beispiel für Gottes unvergleichliche Schöpfungskunst und ein angemessenes Mittel, durch das die Gläubigen unserem Herrn näherkommen. Einmal mehr wird uns daran, wie Er Tausende Seiten Information in die Samen implantiert und zahllose Pflanzen aus diesen winzigen Körnern entstehen läßt, gezeigt, daß Gott die Macht über alle Dinge hat. Gott allein ist es, Der die Pflanzen aus den Samen wachsen läßt, eine Wahrheit, die im Quran in den folgenden Versen enthüllt wird:
Betrachtet ihr wohl, was ihr da sät? Laßt ihr es wachsen oder lassen Wir es wachsen? Wenn Wir wollten, könnten Wir es zerbröckeln lassen so, daß ihr klagen würdet: ... (Quran, 56:63-65)
Ein anderer Vers erklärt, daß Gott, der Schöpfer des Samens, den Samen, der zu Boden fällt, aufplatzen und eine neue Pflanze daraus wachsen läßt:
Siehe, Allah läßt das Korn und den Dattelkern keimen. Er bringt das Lebendige aus dem Toten hervor und das Tote aus dem Lebendigen. Derart ist Allah! Doch wie leicht laßt ihr euch abwenden! (Quran, 6:95)

Saftige Süße Weintrauben wachsen an trockenen Zweigen, wie sie oben zu sehen sind. Ohne Zweifel ist es Gott, der Kilos von Trauben an einem schlanken Stiel wachsen läßt.
Die Wahrheit ist offensichtlich, doch es hat immer Menschen gegeben, die sie nicht verstehen. Wer die Existenz Gottes leugnet, will die Wunder der Schöpfung nicht sehen und versucht immer noch, die Existenz der Samen mit dem Zufall zu erklären. Doch wie sehr sie es auch versuchen mögen, die Wahrheit bleibt dieselbe. Wenn er die perfekte Samenstruktur untersucht und das außergewöhnliche Wissen, daß in ihr enthalten ist, wird jeder Mensch mit Verstand und Gewissen begreifen, daß sie nicht durch Zufall ins Dasein gekommen sein kann, und er wird die Tatsache der Schöpfung bezeugen. Wie sie im weiteren Verlauf dieses Buches sehen werden, sind die Erschaffung des Samens und die Informationen, die er enthält, viel zu komplex, als daß sie aus eigenen Antrieb entstanden sein könnten.
 

ENTSTEHUNG UND AUFBAU DES SAMENS


Sehen sie denn nicht, daß Wir das Wasser zum dürren Land treiben und dadurch Korn hervorbringen, von dem ihr Vieh und sie selber sich ernähren? Wollen sie denn nicht einsichtig sein? (Quran, 32:27)
All die verschiedenen Pflanzen – von den meterhohen Bäumen bis zu den Blumen, an deren Duft Sie sich erfreuen und dem Gemüse und den Früchten, die Sie essen – sie alle waren einmal Samen. Welche Stadien aber mußten diese Samen während ihrer Entstehung durchlaufen?
Das erste Stadium der Entwicklung des Samens ist der Pollentransport, die Verbreitung der männlichen Fortpflanzungszellen blütentragender Pflanzen. Pollen werden durch den Wind transportiert, im Wasser, durch Insekten und Tiere. So gelangen sie zu den Fortpflanzungsorganen der Blumen.
Im Zentrum jeder Blüte befindet sich ein Büschel weiblicher Organe, das Fruchtblatt. Jedes Fruchtblatt besteht aus einem Dorn, Stigma genannt, getragen von einem Stengel.-.
An seiner Basis befindet sich ein Fruchtknoten, der die unbefruchteten Eier enthält, die später zu Samen werden.
Pollen der männlichen Organe werden auf dem Stigma abgelegt, das mit einer klebrigen Substanz überzogen ist und das eine Pollenröhre bereitstellt, die zum Fruchtknoten hinunter reicht. Die klebrige Oberfläche hat eine wichtige Funktion, denn wenn die Pollen den Fruchtknoten nicht erreichen, können sie die Eier nicht befruchten. Die klebrige Oberfläche des Stigmas hält die Pollen fest und bewahrt sie davor verweht und vergeudet zu werden.
Wenn ein Pollen auf dem Stigma gelandet ist, bringt er eine einer feinen Wurzel ähnelnde Röhre hervor, die durch den Stengel zum Fruchtknoten hinunter reicht. Jedes der Pollenkörner enthält zwei Spermien. Die Pollenröhre transportiert die Spermien zum unbefruchteten Ei. Ein Spermium befruchtet das Ei im Embryosackdes Eis, was zur Entwicklung eines Samens führt. Das andere Spermium vereinigt sich mit zwei Zellen im Embryosack und bildet das Gewebe, das den Embryo umhüllt und ihn ernährt. Kurz nach diesem Prozeß, der Befruchtung genannt wird, entsteht ein Same.
Jeder Same enthält einen Pflanzenembryo und einen Nährstoffvorrat. Der Embryo wiederum enthält alle für die künftige Pflanze notwendigen Informationen, wie wir schon zu Beginn erklärt haben. Das heißt, der Embryo enthält eine kleine Kopie der Pflanze; der Nährstoffvorrat ermöglicht dem Embryo das Wachstum, bis die Pflanze ihre eigene Nahrung produzieren kann.


Dieses Diagramm zeigt die Phasen von der Blüte der Pflanze bis zur Samenbildung. Jeder intelligente Mensch kann sehen, daß ein solcher Prozeß nicht das Resultat des Zufalls sein kann. (Ozet Arpaci, Biyoloji 3 (Biologie 3), S. 17.)

Die Eigenschaften der Nährstoffreserven in den Samen
Für den Embryo ist es überlebenswichtig, daß sein Same eine Nährstoffreserve enthält, denn in diesem frühen Stadium hat eine Pflanze noch keine Blätter, mit denen sie die Photosynthese durchführen könnte und keine Wurzeln, mit denen sie Nährstoffe aus dem Boden ziehen könnte. Bevor sie nicht zum Sämling geworden ist, muß sie die Nährstoffe verwenden, die bereits im Samen enthalten sind, um ihre Entwicklung vollenden zu können.
Hier stoßen wir auf das wunderbare Detail, daß in jedem Samen genau die richtige Menge an Nährstoffen enthalten ist, die er benötigt, um seine Bedürfnisse zu befriedigen. Der Nährstoffinhalt von Samen, die für lange Zeit untätig bleiben, bevor sie keimen, zum Beispiel die Kokosnuß und von Samen, die keimen, sobald sie mit Wasser in Berührung kommen, wie die Melonen, wird in verschiedenen Mengen reguliert. Außerdem hängt die Art der Nährstoffe – prinzipiell Stärke, Proteine und manchmal Zucker und Fett – von der Gattung der Pflanze ab. Stärke ist am wichtigsten, da sie die Hauptenergiequelle für den Embryo darstellt. Die ersten Proteine liefern die Aminosäuren, die der Embryo braucht, um weitere für sein Wachstum wichtige Proteine zu produzieren.3
Wer reguliert Menge und Art der Nährstoffe? Der Same kann es nicht sein, denn diese Kalibrierung ist bereits erfolgt, bevor der Same gebildet wird. Ist es also die Ursprungspflanze, die die Menge der Nährstoffe reguliert, indem sie die Stadien des Samens bestimmt und die Zeitdauer, bevor er keimt? Diese Möglichkeit anzunehmen, würde bedeuten eine Reihe ganz unwahrscheinlicher Vorgänge anzunehmen, die schwer zu glauben sind: Die Pflanze müßte über Intelligenz und ein Bewußtsein verfügen, sowie über die Fähigkeit, zukünftige Ereignisse zu kennen, die außerhalb ihrer eigenen Sphäre stattfinden. Kein intelligenter, logisch denkender Mensch kann so etwas glauben.
Die offensichtliche Wahrheit ist, daß der Eine, der in den Samen jeder Pflanze genau die benötigte Nährstoffmenge gibt, der Schöpfer aller Pflanzen ist: Gott.


Diese Skizzen verschiedener Pflanzensamen zeigen die unterschiedlichen Formen des Nährstoffvorrats und der Embryos. (Grains de Vie, S. 18.)

Die Bedeutung der Nährstoffe im Samen

Die Erbse, ein Same, der Zucker speichert
Nach der Befruchtung, wenn sich der Same bildet, werden je nach Pflanzenart Zucker und Fett in dem Samen gespeichert, zusammen mit Stärke und Proteinen. Stärke liefert dem Samen seine Hauptenergiequelle. Die Proteine werden die Aminosäuren produzieren, die der Embryo zum Aufbau weiterer für die Pflanze wichtiger Proteine braucht. Doch damit der Embryo die Proteine und die Stärke aufnehmen kann, die wasserunlöslich sind, müssen sie chemisch in kleine, wasserlösliche Einheiten aufgespaltet werden,4 und wie Sie später in diesem Buch sehen werden, ist der Same mit einem System erschaffen worden, das dieses Problem löst. Die Existenz eines Nährstoffvorrats ist nicht nur für Pflanzen wichtig, die ihn für die Entwicklung ihrer Samen brauchen, sondern auch für Menschen und Tiere. Die Nährstoffe in Weizen, Mais, Reis, Gerste, Roggen, Hafer, Hirse, Buchweizen und Gemüse (Erbsen, Bohnen, Sojabohnen, Augenbohnen, Erdnüsse) und Nüsse mit Schalen (Paranüsse, Kokosnüsse, Walnüsse, Mandeln) sind wichtig für Menschen und Tiere gleichermaßen wichtig.

Gott gibt den Menschen die Samen als vielseitiges Nahrungsmittel.

Diese Samen sind wegen ihres Ölgehaltes von vielfältigem Nutzen.
Normalerweise enthalten Samen vergleichsweise weniger Zucker als andere Substanzen, obwohl Mais, Kastanien, Mandeln, Pistazien und Erbsen einen relativ hohen Zuckeranteil speichern. Die Menge an Fett in öligen Samen steigt rapide an, wenn die Samen reifen. Die wichtigsten Pflanzenöle stammen von Flachs, Baumwolle, Sojabohnen, Oliven, Erdnüssen, Castorbohnen, Kokosnüssen und Sesam. Man benutzt sie nicht nur als Nahrung, sondern auch zur Herstellung von Farben und Lacken, Linoleum, Druckertinte, Seife, Kunstleder und Isoliermaterial.5
Wie diese Beispiele zeigen, haben bestimmte Samen - Ballaststoffe, Gewürze, Getränke, genießbare und Industrieöle, Vitamine und Medikamente - direkt oder indirekt eine Verbindung zu Leben und Gesundheit der Menschen.

Samen wie diese hier im Bild (Gerstenkörner, Pistazien, Walnüsse, Reis, Haselnüsse, Kastanien) sind äußerst nahrhaft.
 
Mineralien und Vitamine im Samen
Die meisten Samen haben einen sehr hohen Nährwert. Sesam- und Sonnenblumensamen haben beispielsweise einen höheren Proteinanteil als Getreide. Kürbissamen enthalten mehr als 30% Protein. Fett macht mehr als die Hälfte des Gewichts dieser Samen aus, die auch reich an Vitamin E sind. Mehr als 80% dieser Fette sind mehrfach ungesättigte Fettsäuren – solche, die vor Arterienverkalkung schützen – essentielle Fettsäuren und die in Öl löslichen Vitamine A, D und E. Auch Vitamin B findet sich in Samen, doch die Menge variiert je nach Pflanzenart.6

Kürbiskerne sind reich an Zink, Kalzium, Phosphor und Vitamin E.
Außerdem sind Samen reich an Mineralien, sie enthalten große Mengen Eisen und Zinn. Auch Magnesium ist in großen Mengen vorhanden, besonders in Kürbissamen. Weiter enthalten viele Samen Kupfer und ziemlich hohe Anteile an Kalzium, Kalium und Phosphor, sowie kleine Mengen Natrium; die Mehrheit der Samen enthält darüber hinaus Jod. Kürbissamen haben eine hohe Konzentration an Zink, aus diesem Grund werden zur Behandlung verschiedener Krankheiten eingesetzt. Weiterhin sind sie reich an Eisen, Kalzium und Phosphor, sie enthalten Vitamin E und essentielle Fettsäuren, darüber hinaus einen Vitamin B Komplex, insbesondere Niazin.


Die Hülsen der Sonnenblumenkerne sind hart und trocken. Aus diesem Grund können die Samen ihre Hülle nicht durchbrechen, wenn sie reif sind. Dies dient dem Schutz der extrem nährstoffreichen Samen.
Sesamsamen sind wahrscheinlich die meistverzehrten Samen der Welt. Sie sind mit mehr als 55% reich an Öl, weitere 20% sind Proteine. Sie enthalten außerdem die Vitamine A und E und die meisten B Vitamine außer B12 und Folsäuren. Wie die meisten Samen haben auch Sesamsamen einen hohen Mineralanteil mit großen Mengen Kalzium, Kupfer, Magnesium, Phosphor, Kalium, Zink und Eisen. Sie sind eine hervorragende Kalziumquelle. Ob durch Vitamin E oder aufgrund anderer Faktoren haben Sesamsamen auch einen milden Antioxidationseffekt.7 Rohe Sonnenblumensamen haben einen höheren Nährwert als geröstete oder gesalzene Samen. Für Menschen mit Blutdruckproblemen sind Sonnenblumensamen reich an Kalium, und sie enthalten wenig Natrium – ein Verhältnis, das gesund ist für die meisten Menschen. Sie haben einen hohen Ölanteil, mehrfach ungesättigte Fettsäuren und dank der linoleischen Säure und des Vitamin E, das sie enthalten, senken sie den Cholesterinspiegel und beugen kardiovaskularen Krankheiten vor. Sonnenblumensamen bestehen aus 25% Proteinen und sind reich an Ballaststoffen, Vitamin B und Kalium, aber arm an Natrium und sie enthalten verschiedene Anteile an Zink, Eisen und Kalzium – eine sehr mineralreiche Nährstoffquelle. Sie haben recht hohe Anteile an Kupfer, Mangan und Phosphor, Außerdem enthalten sie Magnesium.8 Diese wenigen Beispiele zeigen, wie Gott die Samen als Mittel zu dem Zweck benutzt, die Menschen in vielerlei Hinsicht zu versorgen. Es ist eine Seiner Segnungen, für die man danken sollte:
Eßt von dem, was euch Allah bescherte, das Erlaubte und Gute, und dankt für Allahs Wohltaten, falls ihr Ihm dient. (Quran, 16:114)
 

ZEICHEN DER SCHÖPFUNG IM SAMEN



Die Kiwi enthält zahlreiche kleine Samen. Die Aprikose dagegen hat nur einen, der sehr gut in einer harten Schale geschützt ist.
Erschaffen hat Er die Himmel ohne sichtbare Säulen. Und Er stellte festgegründete Berge auf die Erde, damit sie nicht mit euch wanke. Und Er verteilte allerlei Getier über sie. Und vom Himmel senden Wir Regen herab und lassen auf ihr allerlei Lebewesen gedeihen. (Quran, 31:10)
Wie im vorherigen Abschnitt erwähnt, besteht ein Same im wesentlichen aus einer Samenhülle, einem Nährstoffvorrat und einem Embryo. Obwohl der grundsätzliche Aufbau derselbe ist, so sind doch die Art der schützenden Hülle und ihre Stärke sowie Form und Geschmack der Frucht sehr unterschiedlich. Alles, von der Form bis zur Farbe der Samenhülle und bis zu den Materialien, aus denen sie besteht, variiert entsprechend der Pflanzenart und der sie umgebenden Umwelt.
Samen enthüllen herrliche Wunder der Schöpfung. Um nur ein Beispiel zu geben: Eine Aprikose enthält genau einen Kern, einen Samen, der gut durch eine harte Schale geschützt ist. Das fleischige Innere schmeckt süß und ist zum Verzehr geeignet – gut für Vögel, Nagetiere, Insekten und für Menschen. Die Tatsache, daß die Frucht aus zwei solchen Teilen besteht, dient wiederum der Pflanze, denn wenn die Aprikose gegessen wird, wird der in der harten Schale befindliche Same freigelegt und hat so seine Chance, in einer passenden Umgebung zu keimen und zu einem neuen Baum zu werden. Im Gegensatz zur Aprikose ist die Kiwi eine Frucht, die viele kleine eßbare Samen enthält, nicht nur einen. Die Samen dieser fleischigen Frucht sind in Gruppen angeordnet. Weil die Samen so zahlreich sind, besteht eine hohe Wahrscheinlichkeit, daß eine neue Pflanze entsteht, selbst wenn ein Teil der Frucht gegessen wird.
 
Es dieselbe große Vielfalt bei den Samen, wie bei den Pflanzen. Wenn wir bedenken, daß die Samen jeder Pflanze eine andere Form haben, eine andere Menge an Nährstoffen enthalten und verschieden starke Hüllen haben, können wir den Beweis ihrer wunderbaren Schöpfung erkennen.
Oft haben Samen besondere strukturelle Eigenschaften, ein flaumiges Büschel zum Beispiel, mit dessen Hilfe sie transportiert werden können. Die unten gezeigten Samen des Epilobium glaberrinum werden durch den Wind verbreitet. Deren Samenschoten bestehen aus vier Teilen. Sobald diese sich trennen, werden die Samen mit Hilfe ihrer sie tragenden Büschel vom Wind fortgeweht. Die Samen der oben gezeigten Pflanze werden verbreitet, wenn die Pflanze ausgetrocknet ist.
Trockene Früchte haben besondere anatomische Eigenschaften, um ihre Samen zu schützen und zu verbreiten. Nehmen Sie zum Beispiel die Büschel der Distel. Wie Sie gleich in allen Einzelheiten sehen werden, tragen diese kleinen Fallschirme ihre wertvolle Fracht, die reproduzierenden Zellen, mit Hilfe des Windes an die entferntesten Orte.

Alle Samen haben generell den gleichen Inhalt. Doch wie auf dem Bild zu sehen ist, variiert die Form des Samens entsprechend der Pflanzenart. Gott hat die Samen in enormer Vielfalt erschaffen.
 

Die Samen der unten gezeigten Montbretia Pflanze werden vom Wind verbreitet, doch Tiere helfen dabei.

Die Samen der Erbsenpflanze sind geschützt in besonderen kleinen Schoten aufgereiht. Ganz gleich wo in der Welt sie wachsen, alle Erbsen haben dieselbe perfekte Ordnung, ihre wunderbare Farbe und ihren Geschmack aufgrund der ihnen von Gott eingegebenen Information.
Die trockenen Früchte, die zahlreiche Samen haben, öffnen sich, um diese zu verteilen. Sie werden Springfrüchte genannt. Sie haben eine dicke, elastische Samenhaut, die den Embryo und den Nährstoffvorrat schützt. Wenn sie grün werden, werden die Samen zusammengedrückt und üben Druck aufeinander aus. Sie können von verschiedener Farbe, Form und Struktur sein und sie können Flügel, federähnliche Haare oder eine dünne Membran haben.
Trockene Früchte mit vielen Samen sind sehr verschieden und haben viele Formen, wie Schoten, Blasen, Körner etc. Hier einige Beispiele:
Montbretia, mit runden, leuchtend orangen Samen, die in dreifache Kapseln verpackt sind. Die Pflanze wartet auf den Wind oder auf die Berührung durch ein vorüber kommendes Tier, wodurch sie aufplatzt und ihre Samen verteilt.9
Die hülsentragenden Pflanzen sind eine große Kategorie, in der jede Art ihre eigenen Formen und Eigenschaften hat. Samen der Erbsenpflanze zum Beispiel sind in einer ordentlichen Reihe angeordnet. Die Colutea arborescens dagegen hat luftgefüllte Blasen, die mit lautem Knall zerplatzen. Die verblüffendste dieser Pflanzen ist die Katzenkralle oder schwarze Mimose (Mimosa nigra) mit ihren Schoten, von denen jede einen Samen enthält und wie eine haarige Kralle geformt ist.10
Das sind nur wenige Beispiele der funktionalen Strukturen von Samen. Bedenkt man, daß jede Pflanze eine andere Samenanatomie hat, so sind die Vielfalt und der Grad an Perfektion bei den Samen bemerkenswert.
Besondere Materialien im Samenmantel

Jede der Schoten der Mimose (oben) enthält einen Samen und hat die Form eines buschigen Dorns. Colutea arborescens (rechts) verbreitet ihre Samen, indem ihre luftgefüllten Samenschoten aufplatzen.
Auch die Samenhüllen sind mit all ihren Erfordernissen erschaffen worden. Der in dem Samen befindliche Embryo ist sehr wertvoll und verletzlich, er muß daher auf das Beste geschützt werden, bis sich die neue Pflanze vollständig entwickelt hat. Diesen Schutz gibt die Samenhülle, die bei jeder Pflanzenart anders beschaffen ist. Wie wirksam der Schutz ist, hängt von der Elastizität der Samenhülle ab, die auch die Fähigkeit des Samens beeinflußt, zu schwimmen oder vom Wind davongetragen zu werden.
Die äußere Samenhülle kann zahlreiche Variationen ihrer Form annehmen, mit vielen interessanten Eigenschaften. Manche sind mit einer bitteren Substanz überzogen, um Feinde abzuschrecken. Manche enthalten Tannin, eine Gerbsäure, die den Samen vor dem verrotten bewahrt. Die Samen anderer Pflanzenarten sind mit einer geleeartigen Substanz überzogen, die aus komplizierten, mit Proteinen verbundenen Zuckerverbindungen besteht. Bei Kontakt mit Wasser schwillt diese Substanz an, was dem Samen ermöglicht an feuchten Materialien kleben zu bleiben. Wie Sie im folgenden sehen werden, spielt diese Eigenschaft eine wichtige Rolle bei der Keimungsphase.11


Diese gelartigen Objekte gehören zu der Basilikumart Ocimum basilicum. Ein paar Minuten, nachdem ihre Samenhülle mit Wasser in Berührung kommt, beginnen sie, eine gelartige Substanz zu produzieren und nehmen dadurch das oben gezeigte Aussehen an. Samen dieser Basilikumart werden im Orient, insbesondere in Thailand, Fruchtsäften hinzugefügt. (Grains de Vie, S. 24.)

Die schweren Samen der Ipomoea murucoide können dank ihrer feinen Haare in der Luft schweben. Ebenfalls aufgrund ihrer Haare können die Samen vom Wind über den Erdboden gerollt werden. (Grains de Vie, S. 25.)
Die äußere Schutzschicht des Samens ist normalerweise extrem hart, was ihn vor von außen einwirkenden Kräften schützt. In der Endphase ihrer Entwicklung bildet sich bei bestimmten Samen eine wachsähnliche Schicht an ihrer Oberfläche, die den Samen für Wasser und Gase undurchdringlich machen.12 Je nach Art der Pflanze kann der Same von feinen Membranen umhüllt sein, wie bei den Bohnen, oder er ist hart und holzig wie der Kirschkern. Samenhüllen, die wasserundurchlässig sein müssen, sind härter und dicker als andere. Nehmen wir die Bohne als Beispiel für einen Samen, dem wir im alltäglichen Leben begegnen.
Je nach Sorte ist die Bohne in einer oder zwei Hüllen eingeschlossen, die die Samen vor schädlichen Faktoren wie Kälte, Dürre und mechanischen Einflüssen schützen, ganz so wie ein Mantel.
An der Bruchstelle, die entstanden ist, als die Bohne von der Staude gebrochen wurde, befindet sich eine ovale Marke. Wenn man genau hinsieht, ist eine winzige Öffnung sichtbar, die Mikropyle. Aufgrund ihrer Funktion kann man sie mit dem Nabel eines Babys vergleichen. Durch diesen kleinen Kanal ist einmal die Pollenröhre, mit der die weibliche Eizelle im Ovulum befruchtet wurde, eingeführt worden. Wenn die Zeit gekommen ist, dringt Wasser durch diese Öffnung ein und der Same beginnt zu keimen.13

Die Samenhülle ist nicht der einzige Faktor, der den Samen schützt und bei seiner Verbreitung hilft. Bei manchen Pflanzenarten werden diese Funktionen auch von der Frucht übernommen. Das Ovulum der Nicandra physaloide zum Beispiel, deren verschiedene Entwicklungsstadien auf den Bildern gezeigt wird, entwickelt sich zu einer angeschwollenen Frucht voller Samen. Entfernt man Teile der obersten Schicht der Frucht, so scheinen die Samen 500 mal größer geworden zu sein, als die Originaldimensionen des Ovulums. Die Samen sind mit der Mutterpflanze mit ähnlichen Schläuchen verbunden wie eine Nabelschnur. (Grains de Vie, S. 26.)
  Wie bereits erwähnt, richtet sich die Stärke der Samenhülle nach der Pflanzenart. Sie ist weder zu dick, noch zu dünn, sondern hat genau die richtige Stärke, damit sich die Pflanze in ihrer Umwelt entwickeln kann. Ein Same mit einer dünnen Haut kann leichter durch verschiedene externe Einflüsse zerstört werden. Aus diesem Grund haben alle Samen Umhüllungen mit der passenden Stärke für ihre entsprechenden Habitate. Samen mit sehr dicken Hüllen können die schwierigsten Bedingungen überstehen, doch der Nachteil einer ungewöhnlich starken Samenhülle besteht darin, daß der Embryo Probleme hat, diese zu durchbrechen.

Von einer schützenden Haut umschlossene Bohnen.
Samen, die von Tieren verbreitet werden, haben Hüllen, die dünn und leicht genug zu durchdringen sind, daß die Tiere sich für den Inhalt der Samen interessieren. Doch gleichzeitig macht die Struktur dieser Samenhüllen den Samen unattraktiv für alle Samenfresser.14 Aus den bisherigen Erklärungen ergibt sich, daß die Samen, die so simpel aufgebaut zu sein scheinen, tatsächlich sehr detailliert strukturiert sind. Ihre Eigenschaften, vom Verhältnis der Materialien, die sie enthalten, über ihren Inhalt bis zur schützenden Aussenhülle, variieren entsprechend der Umweltbedingungen. Doch wie ist diese Vielfalt mit ihren vielen Details entstanden.


Granatapfelsamen sind von saftigem roten Fruchtfleisch geschützt. Diese Samen mit ihrer attraktiven Erscheinung sind ein Ergebnis Gottes perfekter Schöpfung.
Wenn wir in Bücher schauen, die die Evolutionstheorie propagieren und in denen behauptet wird, sie könne die Fragen „Wie?“ und „Warum?“ beantworten, dann stellen wir fest, daß die Evolutionisten obskure Erklärungen und irreführende Methoden benutzen. In einem Buch mit dem Titel Evolution findet sich folgendes zum Thema Samen und Früchte: Die äußere Schutzhülle eines Samens ist stark genug, den Backenzähnen, der Magensäure und den Enzymen verschiedener Tiere und einer Atmosphäre ohne Sauerstoff zu widerstehen. Außerdem ist diese Samenhülle von der Evolution so designed, daß sie den Embryo vor samenfressenden Tieren schützt sowie davor, zur falschen Zeit zu keimen, wenn die Bedingungen nicht optimal sind.15
Sie werden bemerkt haben, daß nach der Aufzählung einiger der bemerkenswerten Eigenschaften von Samen mit dem Ausdruck „…von der Evolution so designed…“ versucht wird, den Eindruck zu erwecken, sie seien durch Evolution ins Dasein gekommen. Doch der obige Absatz erklärt auf keinen Fall, wie Samen entstanden sind, er erwähnt lediglich die Perfektion ihrer Schöpfung. Die Phrase „…von der Evolution so designed…“ ist in Wahrheit völlig unsinnig. Im übrigen ist der Ausdruck bereits in sich widersprüchlich, denn die Konzepte von Evolution und Design widersprechen sich diametral. Es ist unvorstellbar, daß der Prozeß der Evolution ein Design hervorbringen könnte, denn Evolution basiert doch angeblich auf Zufällen, und allein schon die Existenz einer Ordnung offenbart die Existenz eines bewußten Verstandes. Wenn es also eine Ordnung gibt, folgt daraus, dass es Konzepte wie Evolution und Zufall nicht geben können. Zeichen der Schöpfung in Samen sind klare Beweise, daß sie nicht das Produkt einer Evolution sind, sondern daß sie von Gott dem Allmächtigen erschaffen wurden.


Die Bilder oben zeigen einen Kirschkern und einen Kirschbaum, der gewachsen ist, geblüht hat und wenn die Zeit gekommen ist, Kirschen tragen wird, entsprechend der Information, die in diesem Kirschkern enthalten ist. Das Bild rechts zeigt einen wilden Feigenbaum. Diese etliche Meter hohen Bäume sind genauso aus kleinen Samen gewachsen wie der Kirschbaum mit seinen süßen, roten Früchten. Der kleine Samen auf der Handfläche unten stammt von einem Feigenbaum. Alle Eigenschaften dieser Bäume sind in ihren Samen kodiert und zwar schon seit Millionen Jahren. Aus diesem Grund sprießen die gleichen Pflanzen immer aus den gleichen Samen. Mit der Information, die Gotte den Samen eingegeben hat, zeigt Er uns, daß Er die Macht hat über alle Dinge.

Ein Beispiel mag dies verdeutlichen: Nehmen Sie an, Sie besuchen eine Kunstgalerie und Sie sehen eine Wand voller Bilder, von denen jedes den Samen einer anderen Pflanze darstellt, mit allen Details. Wenn Sie nun den Direktor der Galerie fragen würden, wer alle diese Bilder gemalt habe, was würden Sie wohl denken, wenn Sie zur Antwort bekämen: „Sie wurden von überhaupt keinem Künstler gemalt, sondern sie wurden von der Evolution designed, mit Hilfe von Zufällen“? Zweifellos würden Sie eine solche Antwort völlig unvernünftig finden und Sie würden weiterhin glauben, die Bilder seine das Werk eines Künstlers.
Genauso, wie Sie nicht an das Design der Bilder durch Evolution glauben würden, würden Sie nicht akzeptieren, daß Samen – lebende Strukturen, die alle Informationen über eine Pflanze enthalten, die unter den richtigen Bedingungen keimen und Hunderttausende verschiedene Arten von Früchten und Blumen hervorbringen – als das Ergebnis von Zufällen ins Dasein kamen, ohne daß daran ein Bewußtsein beteiligt war. Die Fragen sollten also lauten, wer diese perfekten Systeme erschaffen hat und wie Pflanzen entsprechend strukturiert worden sind.
Mit ihren Behauptungen über den Zufall können Evolutionisten niemals den exakten Plan in der Struktur der Samen erklären, ein Plan, der ganz offensichtlich nicht als das Resultat von Zufällen entstanden sein kann. Sowie zu jedem Bild ein Künstler gehört, gibt es auch jemanden hinter jedem Plan. Die perfekt geplanten Systeme der Samen sind das Werk Gottes und Seiner unendlichen Weisheit und überlegenen Macht. Die Weisheit, die in jedem Stadium des Lebens der Pflanzen erkennbar ist, ist der klare Beweis, daß sie eine Schöpfung des Allmächtigen Gottes sind.
Er ist es, Der euch vom Himmel Wasser niedersendet. Davon könnt ihr trinken und davon wachsen die Bäume, unter denen ihr weiden laßt. Dadurch läßt Er euch Getreide und Ölbäume und Palmen und Reben und allerlei Früchte wachsen. Siehe, darin ist wahrlich ein Zeichen für nachdenkliche Menschen. (Quran, 16:10-11)
Größenunterschiede der Samen

Die Größe der Samen, wie auch die anderen Eigenschaften der Pflanzen sind in Übereinstimmung mit einem Plan festgelegt. Die Kokosnuß zum Beispiel, die große Entfernungen auf dem Wasser zurücklegt, ist einer der größten Samen. Ihre Größe stellt sicher, daß es genug Nährstoffe auf ihrer langen Reise gibt. Orchideen haben andererseits sehr kleine Samen. Orchideen sind sensible Pflanzen, die nur gedeihen, wenn die richtigen Bedingungen des Bodens, an Licht und Feuchtigkeit herrschen. So produziert die Orchidee Samen, die klein genug sind, um vom Wind davongetragen werden zu können und zahlreich genug, daß wenigstens einige von ihnen eine passende Umgebung finden. Eine einzige Orchideenblume kann Millionen Samen produzieren.16
Die Samen der Buche, im Bild unten links, werden zum Herbstende freigesetzt und vom Wind verweht. Die kleinen, einen halben Zentimeter großen Samen sprießen überall dort, wo es genug Licht gibt.
Tropische Samen sind oftmals sehr groß. Die Mommay ist eine dieser Pflanzen, mit Samen, die etwa 5 cm lang sind. Er kann besonders lange Wurzeln schlagen, was es ihm ermöglicht, an trockenen Orten zu keimen. So wird das Risiko des Vertrocknens aufgrund von Wassermangel vermindert. 17

2cm (0.6 in)
25 cm (10 in)
2 cm (0.8 in)
0.6 cm (0.2 in)
Und Er ist es, Der vom Himmel Wasser hinabsendet. Wir bringen dadurch die Keime aller Dinge heraus, und aus ihnen bringen Wir Grünes hervor, aus dem Wir dicht geschichtetes Korn sprießen lassen und aus den Palmen, aus ihrer Blütenscheide, niederhängende Fruchtbüschel; und Gärten mit Reben und Oliven und Granatäpfeln, einander ähnlich und unähnlich. Beobachtet ihre Frucht, wenn sie sich bildet und reift. Siehe, darin sind wahrlich Leichen für gläubige Menschen. (Quran, 6:99)

Die Samen dieser Palme sind in den unten gezeigten Früchten enthalten. Wenn sie zu Boden fallen und die richtigen Bedingungen herrschen, wird ein Palmenbaum zu wachsen beginnen, der mehrere Meter hoch werden kann.


Aus den trockenen Samen links sind die leuchtend farbigen, lieblich duftenden Blumen auf den Bildern unten geworden. Dieser Tatsache der Schöpfung sollte gebührend gedacht werden.

Es gibt viele verschiedene Blumen, Bäume, Früchte und Gemüse auf der Erde, eine Vielfalt, die aufgrund der in den Samen der Pflanzen gespeicherten Information entsteht.
Links: Schwertlilie und ihr Same
Unten rechts: Alpenveilchen und ihre Samen
Die unten gezeigten Samen enthalten Informationen über die seitlich gezeigten, roten, mit dornenähnlichen Vorsprüngen auf ihrer Außenhaut versehenen Früchte. Weiter enthalten sie Informationen über die grünen Blätter des Baumes, ihre Form und ihre roten Adern. Dank dieser Informationen hat jedes Exemplar dieser Baumart auf der ganzen Welt dieselben Eigenschaften.


Diese oben gezeigten kleinen Samen enthalten alle Informationen über den zu einer Höhe von 30 Metern heranwachsenden Baum (links), einschließlich solcher Eigenschaften wie der Anzahl seiner Blätter, seiner Höhe und ob er Früchte tragen wird. Außerdem ist diese Information seit Anbeginn der Zeiten auf dieselbe Weise in den Samen kodiert. Diese Bäume sind immer aus den gleichen Samen gewachsen.
Jeder weiß, daß in den Boden gepflanzte Samen nach einer Weile diese leuchtend farbigen Blumen hervorbringen. Doch nur wenige Menschen machen sich Gedanken darüber, wie das geschieht und wer den Samen diese Information eingibt. Die wichtigste Wahrheit ist, daß Gott, der alle Formen der Schöpfung kennt, diese Information in die Samen gegeben hat.

Gomphrenia und ihre Samen

1-4) Die Magnolie schließt ihre Blüten nachts nur wenig. Das ermöglicht öfteren Besuch durch Insekten.
5) Die Blume beginnt zu verblühen. Die Blütenblätter werden bald abgeworfen werden.
6) Die Blütenblätter verblassen.
7) Das bestäubte Ovulum der Blume beginnt, sich in eine Frucht zu verwandeln.
8) Die Frucht reift heran und bekommt eine schöne, rote Farbe.
9) Zum Schluß platzt die Frucht auf und enthüllt ihre Samen, die zu Boden fallen werden. Sie werden später zu den prächtigen Magnolienbäumen, wie sie seitlich zu sehen sind.
KONFERENZEN MIT DEM THEMA ''DER NIEDERGANG DER EVOLUTIONSTHEORIE UND DIE WAHRHEIT DER SCHÖPFUNG'' IN BERLIN - DEUTSCHLAND, AM 17-18 APRIL, 2010 KONFERENZ MIT DEM THEMA ''DER NIEDERGANG DER EVOLUTIONSTHEORIE UND DIE WAHRHEIT DER SCHÖPFUNG'' – 28 MAI. 2010, DARMSTADT

DER PROPHET JOSEPH

WUNDER DES GEHIRNS: RIECHEN UND SCHMECKEN

DIE LÖSUNG ALLER PROBLEME: DIE WERTE DES QURAN

BIOMIMETRIE: TECHNOLOGIE IMITIERT NATUR

DER ISLAM: DAS LICHT, DAS DIE WELT ERLEUCHTET

DAS GEHEIMNIS DER PRÜFUNG

DIE BLUTIGE GESCHICHTE DES FASCHISMUS TEIL I

DER PROPHET MOSES (A.S) UND DIE BUNDESLADE

FOSSILIEN STÜRZEN DIE EVOLUTIONSTHEORIE

DIE WUNDER DES QURAN - 4

DIE WUNDER DES QURAN - 3

DIE WUNDER DES QURAN - 2

DIE WUNDER DES QURAN - 1

EINE WELT AUS EIS

DER WUNDERBARE PLANET 1: Beweise Der Schopfung Auf Der Erde

WANDERNDE TIERE - FÜR KINDER 8

TIERE DIE SICH VERSTECKEN KONNEN - FÜR KINDER 7

TIEFES NACHDENKEN

Die Mehrheit der Menschen benutzt ihre Denkfähigkeit nicht so, wie sie es könnte. Der Zweck dieses Dokumentarfilms ist es, die Menschen aufzufordern, so zu denken, wie es angemessen wäre, und sie bei Ihren Bemühungen dabei zu unterstützen.

LIEBE UND ZUSAMMENARBEIT UNTER DEN LEBEWESEN

Einigkeit… Solidarität… Selbstlosigkeit… Aufopferung … Jeder möchte diese Attribute besitzen… Dieser Dokumentarfilm befasst sich mit Sozialverhalten. Doch die Stars dieses Films sind keine Menschen...

ALTRUISMUS IN DER NATUR

In diesem Film werden Sie ein wunderbares, von Allah in den Lebewesen hervorgerufenes Gefühl mütterlicher Liebe und der Selbstaufopferung sehen, das Mütter für ihren Nachwuchs hegen, und Sie werden Zeuge eines der größten Beweise der Schöpfung in der Welt werden...